Notes on the construction of the moduli space of curves
نویسنده
چکیده
The purpose of these notes is to discuss the problem of moduli for curves of genus g ≥ 3 1 and outline the construction of the (coarse) moduli scheme of stable curves due to Gieseker. The notes are broken into 4 parts. In Section 1 we discuss the general problem of constructing a moduli “space” of curves. We will also state results about its properties, some of which will be discussed in the sequel. We begin Section 2 by recalling from [DM] (see also [Vi]) the definition of a groupoid, and define the moduli groupoid of curves, as well as the quotient groupoid of a scheme by a group. We then discuss morphisms and fiber products in the 2-category of groupoids. Once this is in place we state the geometric conditions required for a groupoid to be a stack, and prove that the quotient groupoid of a scheme by a group is a stack. After discussing properties of morphisms of stacks, we define a Deligne-Mumford stack and prove that if a group acts on a scheme so that the stabilizers of geometric points are finite and reduced then the quotient stack is Deligne-Mumford. In the last part of Section 2 we talk about some basic algebro-geometric properties of Deligne-Mumford stacks. In Section 3 the notion of a stable curve is introduced, and we define the groupoid of stable curves. The groupoid of smooth curves is a subgroupoid. We then prove that the groupoid of stable curves of genus g ≥ 3 is equivalent to the quotient groupoid of a Hilbert scheme by the action of the projective linear group with finite, reduced stabilizers at geometric points. By the results of the previous section we can conclude the the groupoid of stable curves is a Deligne-Mumford stack defined over SpecZ (as is the groupoid of smooth curves). We also discuss the results of [DM] on the irreducibility of the moduli stack. We begin Section 4 by defining the moduli space of a Deligne-Mumford stack, proving that a geometric quotient of a scheme by a group is the
منابع مشابه
Universal moduli spaces of vector bundles and the log-minimal model program on the moduli of curves
Recent work on the log-minimal model program for the moduli space of curves, as well as past results of Caporaso, Pandharipande, and Simpson motivate an investigation of compactifications of the universal moduli space of slope semi-stable vector bundles over moduli spaces of curves arising in the Hassett–Keel program. Our main result is the construction of a universal moduli space of slope semi...
متن کاملLectures on Moduli Spaces of Elliptic Curves
These informal notes are an expanded version of lectures on the moduli space of elliptic curves given at Zhejiang University in July, 2008. 1 Their goal is to introduce and motivate basic concepts and constructions important in the study of moduli spaces of curves and abelian varieties through the example of elliptic curves. The advantage of working with elliptic curves is that most constructio...
متن کاملClasses on Compactifications of the Moduli Space of Curves through Solutions to the Quantum Master Equation
In this paper we describe a construction which produces classes in compactifications of the moduli space of curves. This construction extends a construction of Kontsevich which produces classes in the open moduli space from the initial data of a cyclic A∞-algebra. The initial data for our construction is what we call a ‘quantum A∞-algebra’, which arises as a type of deformation of a cyclic A∞-a...
متن کاملLectures on Principal Bundles
The aim of these lectures is to give a brief introduction to principal bundles on algebraic curves towards the construction of the moduli spaces of semistable principal bundles. The first lecture develops the basic machinery on principal bundles, their automorphisms. At the end of the first chapter, we give a proof of theorem of Grothendieck on orthogonal bundles. The second chapter, after deve...
متن کاملChow Stability of Curves of Genus 4 in P
In the paper, we study the GIT construction of the moduli space of Chow semistable curves of genus 4 in P3. By using the GIT method developed by Mumford and a deformation theoretic argument, we give a modular description of this moduli space. We classify Chow stable or Chow semistable curves when they are irreducible or nonreduced. Then we work out the case when a curve has two components. Our ...
متن کامل